08/04/2021, Wednesday, 18:45 - 21:45

1 Systems of linear equations

(5+1+6+3=15 pts)

(15 pts)

In this problem, we want to determine all polynomials $p(x) = a + bx + cx^2$ such that

$$\int_{0}^{1} p(x) dx = 0 \quad \text{and} \quad \int_{0}^{1} x p(x) dx = 1.$$
 (*)

- (a) Find linear equations in the unknowns a, b, c by using (\star) .
- (b) Find the augmented matrix corresponding to the obtained linear equations.
- (c) Put the augmented matrix into reduced row echelon form.
- (d) Find the solution set using the obtained echelon form.

2 Determinants

Find $\alpha \in \mathbb{R}$ such that $\det \begin{pmatrix} \begin{bmatrix} X+Y & X-Y \\ X-Y & X+Y \end{bmatrix} \end{pmatrix} = \alpha \det(X) \det(Y)$ for all matrices $X, Y \in \mathbb{R}^{n \times n}$.

3 Partitioned matrices and nonsingularity (5+10=15 pts)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix.

- (a) Show that the matrix $M = \begin{bmatrix} A & A^{-1} \\ A^{-1} & A \end{bmatrix}$ is nonsingular if and only if A does not have an eigenvalue λ such that $\lambda^4 = 1$.
- (b) Suppose that A does not have an eigenvalue λ such that $\lambda^4 = 1$. Find the inverse of M.

4 Vector spaces and linear transformations

(3+3+3+1+5=15 pts)

For $A \in \mathbb{R}^{n \times n}$, let $S_A = \{X \in \mathbb{R}^{n \times n} \mid AX - XA = 0_{n,n}\}$ and $L_A : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be given by $L_A(X) = AX - XA$.

- (a) Show that S_A is a subspace of $\mathbb{R}^{n \times n}$.
- (b) Take n = 2 and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Determine the dimension of S_B .
- (c) Show that L_A is a linear transformation.
- (d) What is the relationship between S_A and L_A ?

(e) Take
$$n = 2$$
 and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Find the matrix representation of L_B relative to the bases
$$E = F = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

5 Least squares problem

Find the closest vector to

within the subspace

span
$$\left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right)$$
.

 $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$

6 Eigenvalues and diagonalization

(5+5+5=15 pts)

Let $n \ge 2$. Consider the matrix $A \in \mathbb{R}^{n \times n}$ given by

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix}.$$

(a) Show that λ is an eigenvalue of A if and only if $\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0 = 0$.

- (b) Suppose that A has distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Find a nonsingular matrix X such that $X^{-1}AX$ is diagonal.
- (c) To see what happens if A has eigenvalues with higher multiplicities, consider the matrix

$$\begin{bmatrix} 0 & 1 \\ -\lambda^2 & 2\lambda \end{bmatrix}.$$

Find its eigenvalues and check if it is diagonalizable.

 $10~\mathrm{pts}$ free