Linear Algebra I

08/04/2021, Wednesday, 18:45-21:45

1 Systems of linear equations
$(5+1+6+3=15 \mathrm{pts})$

In this problem, we want to determine all polynomials $p(x)=a+b x+c x^{2}$ such that

$$
\int_{0}^{1} p(x) d x=0 \quad \text { and } \quad \int_{0}^{1} x p(x) d x=1
$$

(a) Find linear equations in the unknowns a, b, c by using (\star).
(b) Find the augmented matrix corresponding to the obtained linear equations.
(c) Put the augmented matrix into reduced row echelon form.
(d) Find the solution set using the obtained echelon form.

2 Determinants

Find $\alpha \in \mathbb{R}$ such that $\operatorname{det}\left(\left[\begin{array}{ll}X+Y & X-Y \\ X-Y & X+Y\end{array}\right]\right)=\alpha \operatorname{det}(X) \operatorname{det}(Y)$ for all matrices $X, Y \in \mathbb{R}^{n \times n}$.

3 Partitioned matrices and nonsingularity

$$
(5+10=15 \mathrm{pts})
$$

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix.
(a) Show that the matrix $M=\left[\begin{array}{cc}A & A^{-1} \\ A^{-1} & A\end{array}\right]$ is nonsingular if and only if A does not have an eigenvalue λ such that $\lambda^{4}=1$.
(b) Suppose that A does not have an eigenvalue λ such that $\lambda^{4}=1$. Find the inverse of M.

4 Vector spaces and linear transformations $\quad(3+3+3+1+5=15 \mathrm{pts})$

For $A \in \mathbb{R}^{n \times n}$, let $S_{A}=\left\{X \in \mathbb{R}^{n \times n} \mid A X-X A=0_{n, n}\right\}$ and $L_{A}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ be given by $L_{A}(X)=A X-X A$.
(a) Show that S_{A} is a subspace of $\mathbb{R}^{n \times n}$.
(b) Take $n=2$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Determine the dimension of S_{B}.
(c) Show that L_{A} is a linear transformation.
(d) What is the relationship between S_{A} and L_{A} ?
(e) Take $n=2$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Find the matrix representation of L_{B} relative to the bases

$$
E=F=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)
$$

Find the closest vector to
within the subspace

$$
\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

6 Eigenvalues and diagonalization

$$
(5+5+5=15 \mathrm{pts})
$$

Let $n \geqslant 2$. Consider the matrix $A \in \mathbb{R}^{n \times n}$ given by

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right]
$$

(a) Show that λ is an eigenvalue of A if and only if $\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}=0$.
(b) Suppose that A has distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Find a nonsingular matrix X such that $X^{-1} A X$ is diagonal.
(c) To see what happens if A has eigenvalues with higher multiplicities, consider the matrix

$$
\left[\begin{array}{cc}
0 & 1 \\
-\lambda^{2} & 2 \lambda
\end{array}\right]
$$

Find its eigenvalues and check if it is diagonalizable.

